$\left[\mathrm{Pd}\left(\mathrm{NO}_{3}\right)_{2}\left(\mathrm{C}_{24} \mathrm{H}_{16} \mathrm{~N}_{2}\right)\right] . \mathrm{C}_{2} \mathrm{H}_{6} \mathrm{OS}$

Wimmer, S., Castan, P., Wimmer, F. L. \& Johnson, N. P. (1989). J. Chem. Soc. Dalton Trans. pp. 403-412.
Zagorodnikov, V. P., Khodashova, T. S., Vargaftik, M. N., Moiseev, I. I. \& Porai-Koshita, M. A. (1985). Sov. J. Coord. Chem. 11, 56-62.

Acta Cryst. (1995). C51, 242-244

Hexakis(2-chloroethylammonium) Hexachloroplumbate(II) Chloride

Marcus Geselle and Hartmut Fuess

Technische Hochschule Darmstadt, Materialwissen-schaft-Strukturforschung, Petersenstrasse 20, 64287 Darmstadt, Germany
(Received 25 February 1994; accepted 17 August 1994)

Abstract

The crystal structure of $6\left(\mathrm{C}_{2} \mathrm{H}_{7} \mathrm{ClN}\right)\left[\mathrm{PbCl}_{6}\right] 2 \mathrm{Cl}$ consists of discrete $\left[\mathrm{PbCl}_{6}\right]^{4-}$ octahedra and Cl^{-}anions to which the $\mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{3}^{+}$cations are hydrogen bonded. Due to intramolecular hydrogen bonding, the cations adopt conformations with $\mathrm{N}-\mathrm{C}-\mathrm{C}-\mathrm{Cl}$ torsion angles ranging from $59.4(6)$ to $72.4(6)^{\circ}$.

Comment

Alkylammonium haloplumbates(II) form structures which have not been observed for other alkylammonium halometallates(II). The methylammonium trihaloplumbates, for example, are the only alkylammonium trihalometallates(II) known to have an anionic partial structure analogous to the octahedral network of cubic perovskite (Knop, Wasylishen, White, Cameron \& van Oort, 1990). The same workers were also the first to report on an alkylammonium hexahaloplumbate(II): they obtained tetrakis(methylammonium) hexaiodoplumbate(II) dihydrate as a byproduct of the synthesis of the corresponding triiodoplumbate(II) (Vincent, Robertson, Cameron \& Knop, 1987). The present work is part of a systematic investigation on alkylammonium haloplumbates(II) and is the first report on a hexachloro derivative.

Hexakis(2-chloroethylammonium) hexachloroplumbate(II) chloride, (I), was prepared by slow evaporation of a concentrated hydrochloric acid solution containing lead(II) chloride and 2-chloroethylamine hydrochloride in stoichiometric quantities. Its crystal structure consists of alternating layers parallel to (010) of discrete centrosymmetric $\left[\mathrm{PbCl}_{6}\right]^{4-}$ octahedra and Cl ions. Each octahedron forms hydrogen bonds to four cations, two of which are each connected to a Cl ion via another hydrogen bond. The units thus built are linked to each other via hydrogen bonds between one cation and two Cl ions to yield a network which can be described as hydrogen-bonded ribbons along [010] of alternating tetrakis(2-chloroethylammonium) hexachloroplumbate(II) and dimeric 2-chloroethylammonium chloride units. $\mathrm{Cl} \cdots \mathrm{H}$ distances are 2.30 (2)-2.45 (3) \AA for Cl belonging to $\left[\mathrm{PbCl}_{6}\right]^{4-}$ and 2.18 (2)-2.46 (3) \AA for the Cl ion. $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ angles are in the range $131(2)-163(2)^{\circ}$.

Fig. 1. ORTEP view (Johnson, 1965; Hall, Flack \& Stewart, 1992) along [100] with H atoms omitted for clarity. The displacement ellipsoids are plotted at the 50% probability level.

In $\mathrm{Cs}_{4} \mathrm{PbCl}_{6}$ [the only hexachloroplumbate(II) reported previously], Petrov et al. (1987) found almost ideal $\left[\mathrm{PbCl}_{6}\right]^{4-}$ octahedra with $\mathrm{Pb}-\mathrm{Cl}$ bond lengths between 2.882 (3) and 2.889 (3) \AA and $\mathrm{Cl}-$ $\mathrm{Pb}-\mathrm{Cl}$ bond angles deviating from ideal values by no more than 0.42°. In the title compound the octahedron is slightly distorted. $\mathrm{Pb}-\mathrm{Cl} 1$ is $c a 0.05 \AA$ shorter than the other two $\mathrm{Pb}-\mathrm{Cl}$ bond lengths. The distortion can be accounted for by scrutiny of the hydrogen bonding. Cl 1 forms a hydrogen bond with a $\mathrm{Cl} \cdots \mathrm{H}$ distance of $2.45(3) \AA$, whereas for Cl 2
and Cl 3 the corresponding distances are 2.31 (2) and 2.30 (2) \AA, respectively. The $\mathrm{Cl} \cdots \mathrm{H}$ bond thus seems to be rather weak. Cl 2 forms two further hydrogen bonds with $\mathrm{Cl} \cdots \mathrm{H}$ distances of 2.41 (6) and 2.45 (3) \AA. Despite this, the $\mathrm{Pb}-\mathrm{Cl} 2$ and $\mathrm{Pb}-\mathrm{Cl} 3$ bond lengths differ by only $0.002 \AA$. Apart from the axial distortion of $\mathrm{Pb}-\mathrm{Cl1}$, the octahedron shows an angular distortion as a consequence of the bridging of Cl 1 and Cl 2 by two H atoms bonded to NI. The maximum deviation of the octahedral angles from ideal values is $3.04(4)^{\circ}$.

The cations each adopt an unusual conformation in which one $\mathrm{N}-\mathrm{H}$ bond is almost exactly coplanar with the corresponding $\mathrm{C}-\mathrm{Cl}$ bond, leading to $\mathrm{N}-$ $\mathrm{C}-\mathrm{C}-\mathrm{Cl}$ torsion angles of $59.4(6)-72.4(6)^{\circ}$. The intramolecular $\mathrm{N} \cdots \mathrm{Cl}$ distances of 3.065 (5)-3.196 (6) \AA are considerably shorter than the sum of the van der Waals radii ($3.30 \AA$) of Cl and N (Pimentel \& McClellan, 1960).

Experimental

Crystal data
$6\left(\mathrm{C}_{2} \mathrm{H}_{7} \mathrm{ClN}\right)\left[\mathrm{PbCl}_{6}\right] 2 \mathrm{Cl}$
$M_{r}=974.05$
Triclinic
$P \overline{1}$
$a=8.175$ (1) \AA
$b=10.150(2) \AA$
$c=11.254(1) \AA$
$\alpha=83.28(1)^{\circ}$
$\beta=81.07(1)^{\circ}$
$\gamma=74.30(1)^{\circ}$
$V=885.3(2) \AA^{3}$
$Z=1$
$D_{x}=1.827 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Enraf-Nonius CAD-4 diffractometer
$\theta / 2 \theta$ scans
Absorption correction: empirical $T_{\text {min }}=0.852, T_{\text {max }}=$ 0.998

4031 measured reflections 3105 independent reflections 3036 observed reflections [$F>2 \sigma(F)$]

Refinement

```
Refinement on \(F\)
\(R=0.029\)
\(w R=0.039\)
\(S=1.06\)
3007 reflections
223 parameters
All H-atom parameters refined
\(w=1 /\left[\sigma^{2}(F)+0.001 F^{2}\right]\)
```

Mo $K \alpha$ radiation
$\lambda=0.71069 \AA$
Cell parameters from 25 reflections
$\theta=2.89-16.68^{\circ}$
$\mu=5.88 \mathrm{~mm}^{-1}$
$T=298 \mathrm{~K}$
Prism
$0.175 \times 0.175 \times 0.100 \mathrm{~mm}$ Colourless

$$
\begin{aligned}
& R_{\text {int }}=0.015 \\
& \theta_{\max }=24.97^{\circ} \\
& h=-9 \rightarrow 2 \\
& k=-12 \rightarrow 12 \\
& l=-13 \rightarrow 13
\end{aligned}
$$

3 standard reflections frequency: 120 min intensity decay: none

$$
\begin{aligned}
& (\Delta / \sigma)_{\max }=0.058 \\
& \Delta \rho_{\max }=1.33 \mathrm{e}^{-3} \\
& \Delta \rho_{\min }=-0.80 \mathrm{e}^{-3}
\end{aligned}
$$

Extinction correction: none
Atomic scattering factors from International Tables for X-ray Crystallography (1974, Vol. IV, Tables 2.2B and 2.3.1)

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters $\left(\AA^{2}\right)$

$U_{\mathrm{eq}}=(1 / 3) \sum_{i} \sum_{j} U_{i j} a_{i}^{*} a_{j}^{*} \mathbf{a}_{i} \cdot \mathrm{a}_{j}$				
	x		y	z

Table 2. Selected geometric parameters $\left(\AA,^{\circ}\right)$

$\mathrm{Pb}-\mathrm{Cl1}^{\prime}$	$2.850(1)$	$\mathrm{Cl} 6-\mathrm{C} 4$	$1.804(6)$
$\mathrm{Pb}-\mathrm{Cl}^{\mathrm{i}}$	$2.902(1)$	$\mathrm{N} 2-\mathrm{C} 3$	$1.492(8)$
$\mathrm{Pb}-\mathrm{Cl}^{\mathrm{i}}$	$2.904(1)$	$\mathrm{C} 3-\mathrm{C} 4$	$1.481(9)$
$\mathrm{Cl} 5-\mathrm{C} 2$	$1.803(9)$	$\mathrm{Cl}-\mathrm{C} 6$	$1.747(6)$
$\mathrm{N} 1-\mathrm{C} 1$	$1.476(7)$	$\mathrm{N} 3-\mathrm{C} 5$	$1.463(7)$
$\mathrm{Cl}-\mathrm{C} 2$	$1.521(8)$	$\mathrm{C} 5-\mathrm{C} 6$	$1.531(9)$
$\mathrm{Cl1}-\mathrm{Pb}-\mathrm{Cl}^{1} 2^{\mathrm{i}}$	$91.08(4)$	$\mathrm{N} 2-\mathrm{C} 3-\mathrm{C} 4$	$110.1(5)$
$\mathrm{Cl1}^{1}-\mathrm{Pb}-\mathrm{Cl} 3^{\mathrm{i}}$	$89.71(4)$	$\mathrm{Cl}-\mathrm{C} 4-\mathrm{C} 3$	$109.8(4)$
$\mathrm{C} 22^{1}-\mathrm{Pb}-\mathrm{Cl} 3^{i}$	$93.04(4)$	$\mathrm{N} 3-\mathrm{C} 5-\mathrm{C} 6$	$109.7(5)$
$\mathrm{N} 1-\mathrm{Cl}-\mathrm{C} 2$	$110.1(4)$	$\mathrm{Cl}-\mathrm{C} 6-\mathrm{C} 5$	$109.8(4)$
$\mathrm{Cl} 5-\mathrm{C} 2-\mathrm{Cl}$	$110.0(5)$		

The structure was solved by direct methods and subsequent difference syntheses. Near the end of the refinement some H atoms could be located from a difference synthesis. All other H atoms were positioned geometrically. The positional parameters of all atoms and anisotropic (H atoms isotropic) displacement parameters were refined by full-matrix least squares on F. The bond lengths and angles involving the H atoms were restrained to $1.01(\mathrm{C}-\mathrm{H})$ and $1.03 \AA(\mathrm{~N}-\mathrm{H})$, and 109.5°, respectively. CAD-4 Diffractometer Control Software (Enraf-Nonius, 1991) was used for cell refinement and data collection. All other calculations and the preparation of the material for publication were performed using the Xtal3.2 (Hall, Flack \& Stewart, 1992) program package.

[^0]
References

Enraf-Nonius (1991). CAD-4 Diffractometer Control Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
Hall, S. R., Flack, H. D. \& Stewart, J. M. (1992). Editors. Xtal3.2 Reference Manual. Univs. of Western Australia, Australia, Geneva, Switzerland, and Maryland, USA.
Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
Knop, O., Wasylishen, R. E., White, M. A., Cameron, T. S. \& van Oort, M. J. M. (1990). Can. J. Chem. 68, 412-422.

Petrov, V. V., Bogdanova, A. V., Bagina, M. A., Zavodnik, V. E., Gladyshevskii, E. J., Pecharskii, V. K. \& Mokraya, I. R. (1987). Sov. Phys. Crystallogr. 32, 289-290.
Pimentel, G. G. \& McClellan, A. L. (1960). The Hydrogen Bond, p. 292. San Francisco: W. H. Freeman.

Vincent, B. R., Robertson, K. N., Cameron, T. S. \& Knop, O. (1987). Can. J. Chem. 65, 1042-1046.

Acta Cryst. (1995). C51, 244-245

Bis(L-prolinato- N, O) zinc(II)

Chew-Hee Ng

School of Chemical Sciences, Universiti Sains
Malaysia, Minden, 11800 Penang, Malaysia
Hoong-Kun Fun
School of Physics, Universiti Sains Malaysia, Minden, 11800 Penang, Malaysia

Soon-Beng Teo* and Siang-Guan Teoh
School of Chemical Sciences, Universiti Sains
Malaysia, Minden, 11800 Penang, Malaysia
K. Chinnakali \dagger

School of Physics, Universiti Sains Malaysia, Minden, 11800 Penang, Malaysia
(Received 6 November 1992; accepted 11 August 1994)

Abstract

The title trans complex, $\left[\mathrm{Zn}\left(\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{NO}_{2}\right)_{2}\right]$, forms a polymer and shows a helical structure along the 2_{1} direction with atoms $\mathrm{O} 4\left(2-x, y-\frac{1}{2},-z\right), \mathrm{Zn}, \mathrm{N}(2), \mathrm{C}(7)$ and $\mathrm{C}(6)$ forming the repeating unit. The Zn atom has trigonal bipyramidal geometry and the pyrrolidine rings adopt envelope conformations.

Comment

The title complex results from the reaction of zinc oxide with L-proline. The two L-proline molecules in the complex are coordinated to the Zn atom via their N and carboxylic O atoms. The two bidentate ligands are trans with respect to each other, as in the case of the hexacoordinate complex bis(L-prolinato)copper(II) dihydrate (Mathieson \& Welsh, 1952). The two pyrrolidine rings adopt envelope conformations with best mirror planes bisecting the $\mathrm{N}(1)-\mathrm{C}(2)$ and $\mathrm{N}(2)-\mathrm{C}(7)$ bonds, and passing through the $C(4)$ and $C(9)$ atoms, respectively.

[^1]
(I)

The Zn atom is pentacoordinate, the fifth coordination site being occupied by the symmetry related atom $\mathrm{O}\left(4^{\mathrm{i}}\right)$ [symmetry code: (i) $2-x, y-\frac{1}{2},-z$] of a neighbouring proline molecule so that an infinite polymeric chain is generated. The polymer shows a helical structure along the 2_{1} direction. The zinc coordination here is unique, as most zinc-amino acid complexes are hexacoordinate (Freeman, 1976).

Fig. 1. View of the title molecule showing the labelling of the non- H atoms. Displacement ellipsoids are shown at the 50% probability level.

Fig. 2. Projection of the unit cell along the b axis.

[^0]: Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: MU1117). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

[^1]: \dagger Post Doctoral Research Fellow. Permanent address: Department of Physics, Anna University, Madras 600025, India.

